This paper explores the potential of using different local earthen materials in robotic additive manufacturing workflow despite challenges arising from soil variability. We propose a method to design materials based on locally sourced soils for 3D printing, focusing on the physical and mineralogical characteristics of the soil and the rheological properties of the mixture. By tailoring mixtures for both extrusion and stability and correlating straightforward tests with laboratory data, we advance the adaptability of earth-based materials for 3D printing. Experiments with robotic 3D printing across five soils validate our approach, suggesting pathways for furthering earthen material use in digital fabrication and underscoring the importance of material design.
Ofer Asaf
Pavel Larianovsky
Arnon Bentur
Aaron Sprecher